What is machine learning?

Machine learning is enabling computers to tackle tasks that have, until now, only been carried out by people.

From driving cars to translating speech, machine learning is driving an explosion in the capabilities of artificial intelligence -- helping software make sense of the messy and unpredictable real world.

But what exactly is machine learning and what is making the current boom in machine learning possible?

WHAT IS MACHINE LEARNING?
At a very high level, machine learning is the process of teaching a computer system how to make accurate predictions when fed data.

Those predictions could be answering whether a piece of fruit in a photo is a banana or an apple, spotting people crossing the road in front of a self-driving car, whether the use of the word 'book' in a sentence relates to a paperback or a hotel reservation, whether an email is spam, or recognizing speech accurately enough to generate captions for a YouTube video.

The key difference from traditional computer software is that a human developer hasn't written code that instructs the system how to tell the difference between the banana and the apple.

Instead a machine-learning model has been taught how to reliably discriminate between the fruits by being trained on a large amount of data, in this instance likely a huge number of images labelled as containing a banana or an apple.

Data, and lots of it, is the key to making machine learning possible.

WHAT IS MACHINE LEARNING USED FOR?
Machine learning systems are used all around us, and are a cornerstone of the modern internet.

Machine-learning systems are used to recommend which product you might want to buy next on Amazon or video you want to may want to watch on Netflix.

Every Google search uses multiple machine-learning systems, to understand the language in your query through to personalizing your results, so fishing enthusiasts searching for "bass" aren't inundated with results about guitars. Similarly Gmail's spam and phishing-recognition systems use machine-learning trained models to keep your inbox clear of rogue messages.

One of the most obvious demonstrations of the power of machine learning are virtual assistants, such as Apple's Siri, Amazon's Alexa, the Google Assistant, and Microsoft Cortana.

Each relies heavily on machine learning to support their voice recognition and ability to understand natural language, as well as needing an immense corpus to draw upon to answer queries.

But beyond these very visible manifestations of machine learning, systems are starting to find a use in just about every industry. These exploitations include: computer vision for driverless cars, drones and delivery robots; speech and language recognition and synthesis for chatbots and service robots; facial recognition for surveillance in countries like China; helping radiologists to pick out tumors in x-rays, aiding researchers in spotting genetic sequences related to diseases and identifying molecules that could lead to more effective drugs in healthcare; allowing for predictive maintenance on infrastructure by analyzing IoT sensor data; underpinning the computer vision that makes the cashier-less Amazon Go supermarket possible, offering reasonably accurate transcription and translation of speech for business meetings -- the list goes on and on.

Machine learning could eventually pave the way for robots that can learn directly from humans, with researchers from Nvidia recently creating a machine learning system designed to teach a robot to how to carry out a task, simply by observing that job being performed by a human.

WHAT IS THE DIFFERENCE BETWEEN AI AND MACHINE LEARNING?
Machine learning may have enjoyed enormous success of late, but it is just one method for achieving artificial intelligence.

At the birth of the field of AI in the 1950s, AI was defined as any machine capable of performing a task that would typically require human intelligence.

AI systems will generally demonstrate at least some of the following traits: planning, learning, reasoning, problem solving, knowledge representation, perception, motion, and manipulation and, to a lesser extent, social intelligence and creativity.

Alongside machine learning, there are various other approaches used to build AI systems, including evolutionary computation, where algorithms undergo random mutations and combinations between generations in an attempt to "evolve" optimal solutions, and expert systems, where computers are programmed with rules that allow them to mimic the behavior of a human expert in a specific domain, for example an autopilot system flying a plane.

WHAT ARE THE MAIN TYPES OF MACHINE LEARNING?
Machine learning is generally split into two main categories: supervised and unsupervised learning.